Решить тригонометрическое уравнение

0 голосов
48 просмотров

Решить тригонометрическое уравнение
\frac{ 3^{cosx} }{ 9^{sinxcosx} }=3* 9^{cos( \frac{ \pi }{2}+x) }


спросил от (42 баллов) в категории Алгебра

1 Ответ

0 голосов
ответил от
 
Лучший ответ
\dfrac{3^\cos x}{9^{\sin x\cos x}} =3\cdot 9^{\cos( \frac{\pi}{2}+x) } \\ \\ \dfrac{3^{\cos x}}{3^{\sin2x}}=3\cdot 3^{-2\sin x} \\ \\ 3^{\cos x-\sin 2x}=3^{1-2\sin x} \\ \\ \cos x-2\sin x\cos x=1-2\sin x \\ \\ \cos x -1-2\sin x\cos x+2\sin x=0 \\ \\ \cos x-1-2\sin x(\cos x-1)=0

(\cos x-1)(1-2\sin x)=0 \\ \\ \left[\begin{array}{ccc}\cos x=1 \\ \sin x= \frac{1}{2} \end{array}\right\Leftrightarrow \left[\begin{array}{ccc}x_1=2\pi n , \in Z\\ x_2=(-1)^k\cdot \frac{\pi}{6} +\pi k,k \in Z\end{array}\right

Ответ: 2\pi n, n \in Z;\,\,\, (-1)^k\cdot \frac{\pi}{6} +\pi k,k \in Z
оставил комментарий от (42 баллов)

Огромное спасибо! Можно, если что, буду к вам обращаться? ^^

оставил комментарий от (42 баллов)

ОЙ, спасибо огромное :*

...