Помогите пожалуйста решить уравнение:log2 2sinx+log2 cosx=0

0 голосов
86 просмотров

Помогите пожалуйста решить уравнение:
log2 2sinx+log2 cosx=0


image

спросил от (21 баллов) в категории Алгебра

1 Ответ

0 голосов
ответил от Легенда (86.0k баллов)
 
Лучший ответ

㏒₂2sin(x)+㏒₂cos(x)=0        ОДЗ cos(x)>0  х ∈(-π\2+2πn)∪  (π\2+2πn)  n∈Z
㏒₂ 2sin(x)*cos(x)=0                      sin(x)>0   x ∈ (2πn;π+2πт)  n∈Z
2sin(x)*cos(x)=2⁰
2sin(x)*cos(x)=1
sin(2x) =1
2x=π/2 +2πn   n∈Z
x=π/4 +πn   n∈Z
с учетом ОДЗ  x=π/4 +2πn   n∈Z


оставил комментарий от БОГ (318k баллов)

одз на логарифмы всегда надо

оставил комментарий от Легенда (86.0k баллов)

да ,да вы правы

оставил комментарий от БОГ (318k баллов)

sinx >0 cosx>0 и соответсвенно период неправильный !!

...