Докажите что если у параллелограмма диагональ делит угол ** две равные части, то он...

0 голосов
48 просмотров

Докажите что если у параллелограмма диагональ делит угол на две равные части, то он является ромбом.


спросил от Начинающий (101 баллов) в категории Геометрия

1 Ответ

0 голосов
ответил от Одаренный (1.2k баллов)

Смотри вложение.

Пусть АС биссектриса и диагональ в параллелограмме ABCD

 

тогда

 

(как накрест лежащие углы для параллельных ВС и AD и секущей АС). Тогда,

 

а значит  треугольник ABC
равнобедренный с основанием AC

Значит, AB=BC

По свойству параллелограмма

AB=CD,BC=AD

 

как противоположные стороны. Итак, все стороны параллелограмма ABCD равны, значит, он ромб. Что и требовалось доказать.


image
...