Помогите. докажите, что значение выражения является рациональным числом

0 голосов
67 просмотров

Помогите. докажите, что значение выражения является рациональным числом
(\sqrt{17+4 \sqrt{13} } + \sqrt{17-4 \sqrt{13} } )^{2}


спросил от Одаренный (1.4k баллов) в категории Алгебра

1 Ответ

0 голосов
ответил от Одаренный (3.2k баллов)
(\sqrt{17+4\sqrt{13}}+\sqrt{17-4\sqrt{13}})^2=(\sqrt{17+4\sqrt{13}})^2+(\sqrt{17-4\sqrt{13}})^2+2*\sqrt{17+4\sqrt{13}}*\sqrt{17-4\sqrt{13}}=(17+4\sqrt{13})+(17-4\sqrt{13})+2*\sqrt{(17+4\sqrt{13})*(17-4\sqrt{13})}=2*17+2*\sqrt{(17)^2-(4\sqrt{13})^2}=34+2\sqrt{289-16*13}=34+2*\sqrt{81}=52.

Значит, это выражение равно 52, а это, очевидно, число рациональное...
оставил комментарий от Одаренный (3.2k баллов)

Если честно, решение в другом вопросе лучше, даже обидно, что не догадался сам

...